Minimax rates in sparse, high-dimensional change point detection

نویسندگان

چکیده

We study the detection of a sparse change in high-dimensional mean vector as minimax testing problem. Our first main contribution is to derive exact rate across all parameter regimes for n independent, p-variate Gaussian observations. This exhibits phase transition when sparsity level order ploglog(8n) and has very delicate dependence on sample size: certain regime, it involves triple iterated logarithmic factor n. Further, dense asymptotic we identify sharp leading constant, while corresponding this constant determined within 2. Extensions that cover spatial temporal dependence, primarily case, are also provided.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High dimensional change point estimation via sparse projection

Changepoints are a very common feature of Big Data that arrive in the form of a data stream. In this paper, we study high-dimensional time series in which, at certain time points, the mean structure changes in a sparse subset of the coordinates. The challenge is to borrow strength across the coordinates in order to detect smaller changes than could be observed in any individual component series...

متن کامل

Minimax Rates of Estimation for Sparse PCA in High Dimensions

We study sparse principal components analysis in the high-dimensional setting, where p (the number of variables) can be much larger than n (the number of observations). We prove optimal, non-asymptotic lower and upper bounds on the minimax estimation error for the leading eigenvector when it belongs to an lq ball for q ∈ [0, 1]. Our bounds are sharp in p and n for all q ∈ [0, 1] over a wide cla...

متن کامل

Minimax Rates for Sparse PCA

We state below two results that we use frequently in our proofs. The first is well-known consequence of the CS decomposition. It relates the canonical angles between subspaces to the singular values of products and differences of their corresponding projection matrices.

متن کامل

Minimax-optimal rates for high-dimensional sparse additive models over kernel classes

Sparse additive models are families of d-variate functions that have the additive decomposition f = ∑ j∈S f ∗ j , where S is an unknown subset of cardinality s ≪ d. We consider the case where each component function f j lies in a reproducing kernel Hilbert space, and analyze an l1 kernel-based method for estimating the unknown function f . Working within a highdimensional framework that allows ...

متن کامل

Change Point Detection by Sparse Parameter Estimation

The contribution is focused on change point detection in a one-dimensional stochastic process by sparse parameter estimation from an overparametrized model. A stochastic process with change in the mean is estimated using dictionary consisting of Heaviside functions. The basis pursuit algorithm is used to get sparse parameter estimates. The mentioned method of change point detection in a stochas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Statistics

سال: 2021

ISSN: ['0090-5364', '2168-8966']

DOI: https://doi.org/10.1214/20-aos1994